Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla.

نویسندگان

  • M M Heinricher
  • S McGaraughty
  • V Tortorici
چکیده

It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). Single-cell recording was combined with local infusion of CCK in the RVM and systemic administration of morphine in lightly anesthetized rats. The tail-flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of RVM neurons with distinct responses to opioids have been identified. OFF cells are activated, indirectly, by morphine and mu-opioid agonists, and there is strong evidence that this activation is crucial to opioid antinociception. ON cells, thought to facilitate nociception, are directly inhibited by opioids. Cells of a third class, NEUTRAL cells, do not respond to opioids, and whether they have any role in nociceptive modulation is unknown. CCK microinjected into the RVM by itself had no effect on tail flick latency or the firing of any cell class but significantly attenuated opioid activation of OFF cells and inhibition of the tail flick. Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of transient inactivation of rostral ventromedial medulla on swim stress induced analgesia in formalin test in rats

Introduction: Despite significant progress in understanding pain control mechanism, there are numerous questions about central nervous mechanisms underlying stress-induced analgesia. The rostral ventromedial medulla (RVM) in the brainstem integrates a variety of functions, including pain modulation and pain perception. In the present study, we investigated the effect of temporary inactivatio...

متن کامل

Administration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat

Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). Materials and...

متن کامل

Permanent lesion in rostral ventromedial medulla potentiates swim stress-induced analgesia in formalin test

Objective(s): There are many reports about the role of rostral ventromedial medulla (RVM) in modulating stress-induced analgesia (SIA). In the previous study we demonstrated that temporal inactivation of RVM by lidocaine potentiated stress-induced analgesia. In this study, we investigated the effect of permanent lesion of the RVM on SIA by using formalin test as a model of acute inflammatory pa...

متن کامل

Neural basis for the hyperalgesic action of cholecystokinin in the rostral ventromedial medulla.

The analgesic actions of opioids can be modified by endogenous "anti-opioid" peptides, among them cholecystokinin (CCK). CCK is now thought to have a broader, pronociceptive role, and contributes to hyperalgesia in inflammatory and neuropathic pain states. The aim of this study was to determine whether anti-opioid and pronociceptive actions of CCK have a common underlying mechanism. We showed p...

متن کامل

Lesions in rostral ventromedial or rostral ventrolateral medulla block neurogenic hypertension.

Neurogenic hypertension results from the removal of inhibitory baroreceptor afferent input to vasomotor systems in the central nervous system. We sought to determine whether the bilateral destruction of neurons in the rostral ventrolateral or rostral ventromedial medulla, made using microinjections of N-methyl-D-aspartic acid (30 nmol in 200 nL), would block the acute increase in arterial press...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2001